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Two business areas serving the electronics industry

Pattern Generators Assembly Solutions

Leading pra 0 \s
for the electronics Dly
industry

i

Advanced mask writers indispensible for
the production of the world’s displays
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Industrial leaders with Technical expertise Faster addition of business
shared domain within deep learning value:
knowledge

Knowledge + increased
performance
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Machine learning paradigm

“Data is the new code”

Traditional programming Machine learning

> A relatively easy set of rules
works for say 99% of the
cases.

> Solving the rest 1% can
take 90% of the
programming effort.

> These 1% of odd cases
can often be easy to
collect

» Just feed the new data to
the training of deep
learning algorithms which
will generate a new set
of rules

Rules i
. Machine
Traditional Answers Learning
Data Programming
—>
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Supervised machine learning

Annotation (even assigning labels) usually is expensive and error
prone or ambiguous

Semantic Classification Object Instance
Classification = Segmentation + Localization Detection Segmentation

CAT GRASS, , CAT DOG, DOG, CAT DOG, DOG, CAT
“ \__TREE,SKY PRY J
Single Object No objects, just pixals Single Object Muitiple Object

from: Standford University 2016 winter lectures CS231n Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Non supervised machine learning

Unsupervised, generative deep learning and reinforcement

learning

Training set
Random
noise

Generator

Supervised learning: each .
training example has a e ¥

ground truth label. The model | « *.&%
learns a decision boundary ok
and replicates the labeling on e a8
new data. C ot
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Unsupervised learning:
training examples do not e 2

° o °
have ground truth labels. The o °a‘§’° *
model identifies structure A
such as clusters. New data e ot
can be assigned to clusters. & o °

Training data
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Which problems can be targeted better
with deep learning?

List of projects/ideas

Bridging the gaps

1. Missing data

» Store the data when available, not
when needed

2. Good annotation is expensive

» Use simulations and other
generative methods when possible

» Invest in good annotation tools
3. Computing and storage resources
» For training (infrastructure)
» For inference at the edge
4. Know-how
» Expertise and transfer learning
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Bridging the gaps: Collecting data

Change mindset: Collect the data before you think you need it

(a) Ok (b) Billboarded (c) Corner pick

SMT production process

Solder paste Is meltad
In an oven

_ Clrcutt board

Printed circuit board
mounted PCB)

I, (d) Damaged (e) Not picked (f) Spinning
3D Inspection of
mounted PCB

“
~

: g (H] T I
~_~ Component mounting ) - |
p ﬁxr . 1% 3D Inspection of solder pase r \ |

: High-speead dispensing of solder paste

(g) Tombstoned (h) Upside down (i) Wrong pick angle

Storage for
electronic components

(j) Stop production (k) Wrong component
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Bridging the gaps: Annotating the data

Invest in tools that help to structure, annotate and select the data
for training

“More data beats better algorithms”:

ype, compimien angINcl Compersdth CompMATIHI coerpoeet Casma
000,00 00 and leactype n(7.3) and status = 0 and status 1= 78 ORDER BY package componted catetime

> 0dd cases might be difficult to either T —
collect or simulate but are a success
factor

» Annotation is expensive and human
error prone but...

> Deep learning is robust to non-
systematic annotation errors
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Bridging the gaps: Augmenting the data

Creating simulations for rare cases (that you can figure out ©)
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Bridging the gaps: Augmenting the
training data

From simulations + generative models: you get the annotations
for free
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Bridging the gaps:
Collaboration and share of computing and know-how resources in
Silicon Valley

Associative Domain Adaptation and ResNet-50 without TL

Resnet-50 trained from scratch gives lower Accuracy ResNet scratch
accuracy (best 97,16 % after 3 epochs) and after # epochs

hints also overfitting

Reproduced results from Associative Domain o -
Adaptation a0

= ADA with subset of small chips (original

assignment): 99,64 % as —
- ADA with same test set as in @CDLE:

99,49%

Best ADA network is recorded at epoch 2 (of 8) 1 2 3 4 5 &

.
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CDP38:
4000 TFLOPS of computing
performance
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Bridging the gap: Know how
Transfer Learning

» For many tasks the rules generated for solving a task generalize well to other tasks by
just retraining the neural network with fewer data samples from the new task.

> Only some layers of the network are retrained (“finetuned”) depending on how much
the data sets differ
> Specific requirements on the industry:

> Very high accuracy: At least close to on par with current performance
> Gathered data sets are very skewed: Many samples of OK cases compared with NOK

Retrain ResNet50

T s2xi]

Softmax
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Creating business value

Measuring current system performance without relying on other
machines

We can roughly compute errors made by the Pick & Place machines by annotatin
much fewer images (1/1000 of the total)

Panaxia statistics -

Time since last updated Mount attempts ML classified, all machines
15 Mil . AT
— 13163
— 13730
1oMil — 19001 1omi
— 19208

B 1 day 1 s000s
| sonos
S00K

Collected images in period 90009

19.9 Mil ¥ 130019

- 130020
ML classified images in period

13.76 Mil Reject rate per machine Relative disagreement between vision and ML, all machines
Number of images for each . s
machineno » ¥ Ima T0000% i

13163 1051K — 19001
13730 530.14K -

90006
19001 436K 90008

19203 30.57K 90009

90006 455.67K 102022
- 130019

90008 1.98 Mil

- 130020
90009 2.18 mil ammnn
L CREAR Reject rate, all machines
130019 251.92K
130020 192.34K
130021 97.49K
130022 489.91 K
130023 340.16K
130162 207.78K

130177 1.28 Mil

130178 42002K
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Creating business value: Enhancing
performance

. Vision OK (9930 %) Vision NOK
» Accuracy requirements are
very high but we can take
advantage of already very
accurate processes

ML QK Vision OK, ML OK
(99.X0XX%) (Very costly to tag 99% of the data)
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Enhancing performance

» Deep learning models have
to match to a very high
extent current image analysis
processes as we know they
already very accurate.

ML OK
(99.500(%)

» This allows us to disregard
DL some algorithms without

needing to tag huge amount
of data

ML NOK

Vision OK (99.XXX%)

Vision OK, ML OK

Vision NOK

Vision NOK, ML OK
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Creating business value: Enhancing
performance trade-offs

» Detect as many possible Vision OK
False Positives at the cost of

as low as possible False
Negatives

> First results show FP reduced " S
by > 50 % (expensive errors)
at the cost of FR increased
by < 20 % (cheaper errors)

ML NOK

Vision NOK
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Deployment issues

Reliability and performance

When to let DL be part in the decision making Performance without losing accuracy:
» Never seen data in the training process is likely » Model compression techniques
to be classified incorrectly. > P|ug-in HW accelerators

» But if performance of current process and DL is
close or better than already very accurate
systems you can start trusting DL for specific
tasks

..
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Deep learning is here to help us to take the next leap in electronics
manufacturing process reliability

ALPHAZERD 2

——— AN

STOCKFISH

Chess.com

Thank you for listening!
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